一、前述
反向自动求导是 TensorFlow 实现的方案,首先,它执行图的前向阶段,从输入到输出,去计算节点
值,然后是反向阶段,从输出到输入去计算所有的偏导。
二、具体
1、举例
图是第二个阶段,在第一个阶段中,从 x =3和 y =4开始去计算所有的节点值
f ( x / y )=x 2 * y + y + 2
求解的想法是逐渐的从图上往下,计算 f ( x , y )的偏导,使用每一个连续的节点,直到我们到达变量节
点,严重依赖链式求导法则!
2.具体过程:
因为n7是输出节点,所以f=n7,所以?f/??7= 1
让我们继续往下走到n5节点,?f/??5=?f/??7∗??7/??5 . 我们已知?f/??7=1,所以我们需要知道??7/??5 ,因为n7=n5+n6,所以我们求得??7/??5=1,所以?f/??5=1*1=1
现在我们继续走到节点n4,?f/??4=?f/??5∗??5/??4,因为n5=n4*n2,我们求得�?5/??4=n2,?f/??4=1*4
沿着图一路向下,我们可以计算出所有节点,就能计算出 ??/?x= 24,??/?y= 10
那我们就可以利用和上面类似的方式方法去计算??/??